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We examine the possibility of generating a propagating chemical wave front when a
local input of an autocatalyst B is introduced into a uniform concentration of a
reactant A. The autocatalysis is assumed to be of order m, so that A—B at a rate
k, [A][B]™, while the autocatalyst decays to an inert product C at a rate of order =,
B —C, rate k,[B]". The situation is examined for m, n > 1 and emphasis placed on
obtaining threshold criteria for the development of reaction—diffusion fronts.

THE ROYAL A
SOCIETY

1. Introduction

Autocatalysis or chain-branching has been seen to play a key role in a number of
chemical reactions, and it has been usual, in the reaction—diffusion context, to model
this process by isothermal quadratic autocatalysis. Here the chemical reaction is
represented schematically by

A+B 2B, rate k, ab, (1a)
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where a and b are the concentrations of reactant A and autocatalyst B respectively.
This then leads to a consideration of the much-studied Fisher—-Kolmogorov equation
(see, for example, Fisher 1937; Kolmogorov et al. 1937; Aronson 1978; Fife 1978;
Bramson 1983). This basic problem has arisen in other contexts; the original
motivation (Fisher 1937) was to explain the advance of an advantageous gene
through a population. It has also been proposed as a model for other biological and
biochemical systems, many of which are described in the recent book by Murray
(1989). In the chemical context, kinetic scheme (1a) has been suggested as a
mechanism for certain isothermal gas-phase reactions (for example, Voronkov &
Semenov 1939; Dixon-Lewis & Williams 1977; Gray 1988).

More recently Hanna et al. (1982) and Saul & Showalter (1984) have shown that
certain liquid-phase reactions can be adequately described by the cubic autocatalytic
rate law

A+2B 3B, rate k,ab® (1d)

The reaction—diffusion equations arising from this kinetic scheme (as well as the case
when there is assumed to be a mixture of both quadratic and cubic autocatalysis)
have been examined by Gray et al. (1990). Further work on travelling waves with
cubic autocatalysis has been reported by Billingham & Needham (1991a), with an
extensive study of both quadratic and cubic autocatalysis when the diffusion
coefficients of species A and B are significantly different being described in
Billingham & Needham (19910, ¢, d).
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262 D. J. Needham and J. H. Merkin

Recently the present authors have treated the case when the autocatalyst B is
assumed not to be indefinitely stable, but decays to an inert product of reaction C
either linearly,

B—C, rate k, b, (2a)

or has a quadratic termination step
B+B—C, rate k, b (2b)

(Merkin et al. 1989 ; Merkin & Needham 1990, 1991). These detailed studies revealed
that there are distinct and important differences in the conditions for the initiation
of reaction—diffusion travelling waves, and in the structure of such waves, depending
on the type of autocatalytic reaction scheme (either (1a) or (14)) and decay rate
(either (2a) or (2b)) considered.

This work brought out clearly the need for a careful appraisal of the actual
chemical kinetics that should be used in modelling these processes. In nearly all cases
of practical interest the full chain-branching or autocatalytic reaction is not given by
just a single reaction step of the type given in (1a) or (1b), but involves many simple
reactions. An attempt is then made to describe the complex overall mechanism in
terms of a single reaction step by lumping or empirically fitting data. With this in
mind, there is no reason to suppose that all such systems would be described by
reaction rates proportional to just integer powers of the autocatalyst concentration.
It is the purpose of this paper to relax this constraint and to examine the initiation
and propagation of reaction—diffusion travelling waves for more general autocatalytic
schemes

A4+mB—-(m+1)B, rate k,ab™, (3a)

and allowing for autocatalyst decay via
B-C, ratek,b", (3b)

where m and n are general (not necessarily integer) powers subject only to the
restriction that m, n > 1. We shall, however, assume that reactant A and autocatalyst
B have equal diffusion coefficients. The case m = 1, n = 1 is discussed in Merkin et al.
(1989) and has been considered as a model for the spread of infectious disease (with
the diffusion coefficient of A in this case being zero) by Kermack & McKendrick
(1927) and Kendall (1965). The further cases m = 2, n = 1 and n = 2 are discussed in
Merkin & Needham (1990) and m = 1, n = 2 in Merkin & Needham (1991).
Reaction schemes (3) lead to reaction—diffusion equations, which in dimensionless
form and for plane geometry, are
— 02 2 __ m
Qo /0t = Q®a /02 —af ’1—oo<x<oo, 130 (4a)

0B/t = B*B/0a® + af™ — k", | (4b)
subject to the initial conditions

Bog(x), |2l <o,

_ e
a=1, /’)—10, | > o, B1=0, (5a)

where g(z) is a positive, continuous function of z in |x| < o, with max {g(z)} = 1. In
addition we have boundary conditions

a>1, -0 as |rj>o00 for t=0. (5b)
Phil. Trans. R. Soc. Lond. A (1991)
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Travelling waves in an isothermal system 263

The non-dimensionalization of the original equations follows that used by the
present authors in the above mentioned papers. The functions a and g are the
dimensionless concentrations of species A and B respectively. The parameter x =
ky/k; agt™ ™ (where @, is the initial uniform concentration of A) can be regarded as
a chain-branching factor and represents the relative strength of the decay rate to the
autocatalytic production step, the parameter g, represents the maximum value of
the initial input of autocatalyst B relative to A.

In the previous cases much useful information about the conditions under which
travelling waves can develop was obtained from two simplified versions of the full
initial-value problem (4), (5), namely the well-stirred analogue of this problem and
the solution for £, small. Consequently, this is where we start the present discussion.

2. The well-stirred analogue
The well-stirred analogue of the initial-value problem (4), (5) is
do/dt = —ap™, df/dt = af™ —«kp", (6)

subject to a(0) =1, f(0) = f,, ina >0, = 0.

There are three cases to consider, depending on the sign of m —n. We start with the
case m = n. Here the equation for the trajectories of the system in the (a, f) phase
plane is

dp/de = (k—a)/a, p=p, when a=1. (7Ta,b)

Equation (7a) is the same equation as discussed in Merkin et al. (1989) (for the case
m=mn=1) and in Merkin & Needham (1990) (for the case m = n = 2) and the
argument for a general index follows directly that given previously. From this we can
deduce that we can expect no travelling wave to form for x > 1, with there being a
‘trigger ' mechanism (independent of the magnitude of f,) in the production of  for
the initiation of a travelling wave only when k < 1. Further, we expect that, at the
rear of any such wave formed, & would tend to some non-zero constant .

Next consider the case m < n. We note first that for n —m = 1, the equation for the
integral paths in the phase plane reduces to

dp/de =«kp/a—1, p=p, at a=1, (8)

which is the same as that considered in Merkin & Needham (1991) for the case
m = 1, n = 2. Here we found a ‘trigger’ mechanism for the initiation of a travelling
wave for all values of x and f,. We also found that all trajectories in the positive
quadrant of the (e, ) phase plane approached the origin, i.e. #—0 as a—0 for all «
and f,, the particular way in which this limit is approached depending on the value
of k, suggesting that a would become zero at the rear of the reaction-diffusion wave.

Similar behaviour is found for general values of m and n (m <n), where the
corresponding equation for the integral paths is

dp/de = (k™ —a)fa, f=p, at a=1. (9a,b)

The phase portrait of equation (9a) in the quadrant «, f > 0 is readily obtained by
a consideration of isoclines, and it is found to have precisely the same qualitative
form as that of equation (8). Hence we still find a ‘trigger’ mechanism for the
initiation of a travelling wave for all values of x and £, and that all trajectories
approach the origin. However, the way in which this limit is approached is different

Phil. Trans. R. Soc. Lond. A (1991)
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264 D. J. Needham and J. H. Merkin

to the previous case; now we find that the behaviour of f§ for small o depends on
whether n—m > 1 or n—m < 1, with, as a0,

B~ (kM) VM(—Inoa) V™ M=n—m—1>0 (10a)
B~ (k) VN, N=n—m>0,N<1. (10b)
Finally, we consider the case m > n. Here the equation for the trajectories in the

(e, B) phase plane is

dp/da = (k—apm=")fafm . (11)
The case m = 2, n = 1 has been discussed in Merkin & Needham (1990) and similar
considerations apply for general m and n. The horizontal and vertical isoclines of
equation (11) are given by g = (k/a)Y/™ " and a = 0, # = 0 respectively, so that

dﬁ‘{ <0 in g> (k/a)tm",

da|>0 in < (k/a)V/m™,

e (12)

Hence each integral path will start at large o, when it is asymptotic from above to
the curve f = (k/a)"™ ™. Then, as a decreases, £ grows until it reaches a maximum
at the horizontal isocline, from which it then decreases to zero at a finite value of «.
Now the particular trajectory that we require is the one that starts with g = g, at
o = 1. So that if B, < /™ ", this trajectory starts below the horizontal isocline and
f decreases monotonically to zero at « = o, (say), o, # 0. However, if g, > ¥/™"
this trajectory starts above the horizontal isocline and £ begins by increasing before
finally decreasing to zero at « = a,. Hence we must have

ﬂo > gl/m-n (13)

to ‘trigger’ the production of B, which suggests that, in the full reaction-diffusion
system, (13) will supply a lower bound on the value of 8, required for the initiation
of a travelling wave.

To summarize, the well-stirred analogue examined in this section indicates that for
m, n = 1 we have the following cases.

(i) m = n. A travelling wave will be initiated in the reaction—diffusion system (4),
(6) if and only if « < 1, with no restriction on g, > 0.

(ii) m < n. A travelling wave will be initiated in the reaction—diffusion problem (4),
(6) for all «, g, > 0.

(iii) m > n. A travelling wave will not be initiated in the reaction—diffusion
problem (4), (5) unless g, > «™ " irrespective of any additional conditions on «
alone.

The above cases are further substantiated and modified by considering the solution
of the full initial-value problem (4), (5) with g, < 1.

3. Solution for small £,
To obtain a solution of the initial-value problem (4), (5) valid for g, < 1, we put
a=1+p0A(x,t), p=7p,Bxt), (14a)

with 4(x,t), B(x,t) of O(1) as f,—> 0. On substituting (14 ) into equations (4), we find
that we need consider only equation (4b), which becomes, on neglecting the small,
O(py), contribution to «,

AB/3t = 02B/0a + fn=t B" — kit BN, (14)
Phil. Trans. R. Soc. Lond. A (1991)
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Travelling waves in an isothermal system 265

Equation (14b) has to be solved subject to initial and boundary conditions derived
directly from (5).

There are special cases to consider before we discuss equation (14b) for general
values of m and n. First, take the case m = 1, n > 1. Here the term of O(f;~*) can be
neglected at leading order, and we find that, for ¢ > 1,

B(x,t) ~ By(ix/2t)et e %14t /g3, (15)

where B,(*) is the Fourier transform of g(z) and is a bounded function. This shows
that for « of O(1) the growth in B is exponential for all x with the solution then being
unstable, and suggests the formation of a reaction—diffusion wave for all values of «
no matter how small the initial input of autocatalyst. Moreover, analysis of the
asymptotic form (15) in a moving frame of reference, as given in detail in Merkin &
Needham (1989), shows that two diverging wave fronts with exponential profile and
speed v, = &+ 2 propagate outwards into the unreacted state, indicating that this wave
speed is independent of « and equal to the Fisher-Kolmogorov wave speed.

Next, consider the case n = 1, m > 1. Here the term of O(f7"*) can be neglected at
leading order, with then

B(x,t) ~ By(ix/2t) e e %"/4t /i (16)

for ¢ > 1. In this case B(x,t)— 0 uniformly in x as t > 0o and the solution is stable.
Hence there is no build up in the concentration of the autocatalyst and no wave will
form for small initial inputs. This is in line with the conjecture from the previous
section (inequality (13)).

Now take m = n = 1. Here both reaction terms in equation (14b) are included at
leading order, with then

B(x, t) ~ By(ix/2t) et e=#'/4t /13 17
0

for ¢ large. Here there is a build up in autocatalyst concentration only for « <1,
which is the condition for the initiation of a travelling wave found by Merkin et al.
(1989). As also reported in Merkin et al. (1989), (17) indicates that, with x < 1, the
initiated travelling waves will ultimately propagate with speed +24/(1—«).

For general values of m > 1 and » > 1, both reaction terms in equation (14b) are
omitted at leading order, leading to a diffusion equation to be solved for B(z,t),
giving, for ¢ > 1,

B(x, t) ~ By(ix/2t) e *" /4t /3, (18)

In this case we must consider whether this leading-order diffusion approximation
remains a uniform approximation to equation (14b) as ¢t > oo, since all the reaction
terms in (14b) have been neglected at this stage. We can achieve this by computing
the ratio of the magnitude of the terms retained in equation (14b) to those neglected,
via (18), for ¢t > 1. It is readily seen that, for m,n > 3, the leading-order term does
remain as a uniform approximation to (14b) as ¢ - co, and we can infer directly from
(18) that, in this case, B(z,t) >0 uniformly in « as ¢t - o0 through diffusion. Thus for
m,n > 3 a travelling wave does not develop for small initial inputs of the auto-
catalyst.

However, for 1 <n <3 or 1 <m <3, a non-uniformity does develop in the
solution of the leading-order problem for ¢ large. There are three cases to consider.

(i) 1 <m < 3,n>m> 1. Here it is the term of O(£7*) in equation (14b) that first

Phil. Trans. R. Soc. Lond. A (1991)
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becomes comparable with the retained terms, when ¢ is of O(f,2™ V/G=™) and x of
O(Bym-1/63=m)) We then put

t=frm DG = pomeD/Gmm Y B = Bpgm—ni@=m (19a)
with equation (14b) becoming, at leading order,
OB/or = 2B/oX2+B™, |X|>0, 7>0, (19b)

which must be solved subject to matching with (18) as 7 0. Now, with 1 <m < 3,
the solution of this initial-value problem has a pointwise blow-up at finite 7> 0
(Bandle & Levine 1989; Levine 1990). At this stage the small §; theory fails.
However, this local blow-up leads to a rapid rise in the concentration of the
autocatalyst from initially small values, indicating the formation of a reaction—
diffusion wave on a timescale ¢ of O(f, 2™ 1/G=m),

(i) 1 <n <3, m>n>1. Here it is the term of O(f ') in equation (14b) which
first becomes comparable with the retained diffusion terms. This occurs on a
timescale of O(B;*" V/¢=m) and x of O(B; * V/G~™), On writing

= BV g = gD/ X B nD/Gom) B (204)
equation (14b) becomes, at leading order,
0B/or = 0*B/oX?—«kB", |X|>0, 7>0, (20b)

which again has to be solved subject to matching with (18) as 7—0. It is readily
shown via the comparison theorem for scalar parabolic operators (see, for example,
Britton 1986) that the solution of this initial-value problem has B(X,7) 0 as 7> o0
uniformly in X, and hence no reaction—diffusion wave can form in this case.

(iii) 1 <m = n < 3. In this case, both reaction terms in (14 ) are of the same order,
and become comparable with the retained diffusion terms when ¢ is of
O(By2m~-1/G=m) The appropriate re-scaling on this long timescale is as in (19a), in
terms of which equation (145) becomes,

0B/or = 2B/oX?+ (1—k)B™, |X|>0, 7>0, (21)

again to be solved subject to matching with (18) as 7— 0. For « > 1 it can be shown,
again via a comparison theorem, that B(X,7) >0 as 7 o uniformly in X, and so no
reaction—diffusion wave is initiated. However, for x < 1, the initial-value problem
has local point-wise finite-time blow-up and this indicates the onset of wave
formation over a timescale of O(f,%™ V/G=™) The case k = 1 requires further
consideration which is not presented here. An analysis of this critical case reveals
that wave formation does not occur at x = 1.

In the above analysis, we have not discussed the cases when m =3, n >3 or
n = 3, m > 3. These are critical cases in the sense that the approach we have used
above is not sufficiently refined to distinguish whether these cases result in a non-
uniformity in the leading-order diffusion approximation as ¢t —oco. However, these
cases can be considered using a multiple scales approach on equation (145) (Needham
& Merkin 1991). This shows that finite-time blow-up occurs for m = 3, n > 3, which
indicates reaction—diffusion wave formation, but over a much longer timescale, of
O(exp (f,')). However, for n =3, m > 3, B(x,t) decays to zero over the same long
timescale, and a reaction—diffusion wave is not initiated.

The situation with the various cases is summarized in figure 1. We can draw some

Phil. Trans. R. Soc. Lond. A (1991)
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naA

blow - up stable

reaction + diffusion diffusion only
3
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reaction + diffusion stable

N reaction + diffusion
&
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1 3 m

Figure 1. The behaviour of the small £, solution (§3) with respect to the autocatalysis exponent
m and decay rate exponent n.

conclusions from this small g, theory. In particular, it indicates how the effect of
diffusion may modify conclusions drawn from the well-stirred analogue treated in §2.
We have seen that for 1 < n < 3 and for 1 < m < 3 the ultimate long time behaviour
is dictated by the reaction terms and hence the well-stirred analogue is in agreement
with the small g, theory, providing an accurate qualitative guide to the question of
wave formation in the full system. However, for n, m > 3 with g, sufficiently small,
diffusion dominates for all ¢ and, not surprisingly, the well-stirred analogue fails to
account accurately for the final outcome of the system. The well-stirred analogue
indicates a threshold on g, for the formation of a travelling wave occurring only
for n < m, this being a reaction-dominated threshold. However, the present small 3,
theory has shown that there is, in fact, a threshold on g, for all n, m > 3, with this
being diffusion dominated.

4. Permanent form travelling waves

Here we examine the properties of permanent form travelling waves which can
develop from the initial-value problem (4), (5). It is readily shown that any such
wave necessarily has a constant propagation speed V;. Also, by symmetry, we need
consider only right-moving waves, in which case we have 1 > 0. A permanent form
travelling wave generated in the initial-value problem (4), (5) can therefore be
defined by the following.

Definition. A unit travelling wave is a non-trivial (« # 1, § # 0) wave of permanent
form, travelling with constant speed V; > 0 and having uniform conditions a—1,
B —0 ahead of the wave and uniform conditions behind the wave. Throughout the
wave a, f must satisfy equations (4) with « > 0, g > 0.

The existence of a unit travelling wave then requires a non-trivial, non-negative
solution of the ordinary differential equations,

&, +Voa,—af™ =0
Byy+ Vo B, +afm™—kp" =0
Phil. Trans. R. Soc. Lond. A (1991)

J—oo<y<oo, (22a, b)
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268 D. J. Needham and J. H. Merkin
where y = x—V,¢. Ahead of the wave we have,
a—>1, -0 as y—>o0, (23a)
while behind the wave,
a—->a, >0 as y—>—o0 (23b)

for some a = 0 (which may depend upon « and V).

We first establish some overall properties of unit travelling waves, which hold for
all n, m > 1. In what follows, proofs are given only for results which do not follow
directly from similar results in Merkin et al. (1989), Merkin & Needham (1990), or
Billingham & Needham (1991b).

(i) Properties for m, m =1
R1. In a unit travelling wave a(y) > 0 and f(y) > 0 for all —o0 <y < o0. O

R2. In a unit travelling wave o, <a(y) <1 and 0 <oa(y)+py) <1 for all
—0 <y < 0. O

R3. In a unit travelling wave a(y) is strictly monotone increasing.

Proof. Let a(y), B(y) be a unit travelling wave. Suppose a,(y) has more than one
zero in —o0 <y < 0. Let y, and y,,,, be two consecutive zeros of a, with y, < y,,,.
Then, using equation (22a) and R1, we have that «,,(y,.,) > 0 and hence «,(y) <0
for all y, <y <y,.;. Thus a,,(y,) < 0. However, from equation (22a) and R1 we
obtain a,,(y,) > 0. This leads to a contradiction and we conclude that a,(y) has at
most one zero for —oo <y < 00. Suppose now that a,(y) has exactly one zero
in —o0 <y<oo at y =y, Since a,(y, =0, equation (22a) and R1 show that
(o) > 0, and hence a,(y) < 0 for all —oo <y < y,. Therefore, on integrating o,
with respect to ¥ on the range — o0 <y < y*, we obtain, on using (23b),

y'k
J aydy =a(y*)—a, <0,
—00

for any — oo < y* <y,, which violates £2. Thus we conclude that a,(y) # 0 for any
—00 <y < 0. Condition (23a, b) and R2 then imply that o(y) is strictly monotone
increasing for — oo < y < o0, as required. O

We now develop results specific to the three cases.
(ii) Properties for n =m > 1
R4. The existence of a unit travelling wave requires x < 1. O

R5. In a unit travelling wave, #(y) has a unique turning-point, which is a local

maximum. O
R6. In a unit travelling wave, o, < «. O
R7. In a unit travelling wave, f(y) < (1 —«). O

With regard to the existence of unit travelling waves, it is readily shown using
formal asymptotic methods that for each 0 < k < 1, there exists a unique solution to
the boundary-value problem (22), (23) for each V sufficiently large. Moreover, it is
clear that this boundary-value problem has no solution when ¥, = 0. This indicates
that there must exist a V*(«,m) such that, for any fixed 0 < « < 1, there will be
a unique unit travelling wave solution for each V, > V*. We have been unable this

Phil. Trans. R. Soc. Lond. A (1991)
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far to support this conjecture with a rigorous proof; however, numerical solutions
of (22), (23) are strongly supportive of the result. We note that for the case n =
m = 1, as discussed in Merkin et al. (1989), it was shown that V*(x;1) = 24/(1 —«)
for 0 < k < 1. Also, it is readily shown that for fixed 0 < « < 1, o (V, k;m) > aZl(k)
as V,— o0, where aX(k) is the smaller of the two positive zeros of the function
F(a) = 1—a,+«In a,. We can obtain the limiting forms of a®(x) as,

aOO

eV (l+e V™) as k-0,
S(K)~{ ( )

1—(1—=x)+ ... as k-1,

(iii) Properties for n > m = 1
R8. In a unit travelling wave, f(y) has a unique turning point which is a local
maximum. O
R9. A unit travelling wave has o, = 0. O

R10. A unit travelling wave has,

KTVemm e s
1, k< 1.

By) <{

Proof. We note that R1 and conditions (23) show that ((y) achieves its maxi-
mum value, B .., say, on —o0 < y < oo at a local maximum at y = y*, say, where
Byy(y*) <0, B,(y*) = 0. From (22b) it then follows that,

Brnax{o(y*) = & max s = 0.
However, g7, > 0 via R1, and so,
Brnax < [y /K] < 2 n=m
via R2. Also from R2, £, <1, and the result follows. |

In this case it may be shown rigorously (following directly the re-normalization
approach in Merkin & Needham (1991) for n = 2, m = 1) that a unique unit travelling
wave exists for each x > 0 and at each Vj sufficiently large. Again it is readily shown
that no unit travelling wave exists at Vj = 0. This leads us to again conjecture
that there exists a V*(x;m,n) such that, for any « > 0, there is a unique unit
travelling wave for each V, > V*(«x;m, n). In the particular case when m = 1, we have
V*(k,1,n) = 2 which is the Fisher-Kolmogorov minimum wave speed.

(iv) Properties for m >n =1
R11. The existence of a unit travelling wave requires, k < PF/(P+1)P*!, where
P =m—n. When this condition is satisfied a unit travelling wave has f7(«) <
PBrax(y) < B7(k) where B~ (k), f*(x) are the two positive roots of the equation

P —1)4« = 0.

Proof. In a unit travelling wave, since f(y)—0 as |y|—> o0, f(y) achieves its
maximum at one or more points in — o0 < y < 0. Let y = y, be one such point, then,

BYs) = Prax > 0, Bys) =0, B, (y) <O. (240a)
Also, from equation (22b), we have,
Byu(Ys) = Brraxik — o Ys) Prnaxt < 0, (24b)
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where P = m—mn > 0. Hence via (24a, b) we find that,
(Ys) Z Kfmax- (24 ¢)
On combining (24c¢) with R2 we obtain,
max{Bmax — 1} +& < 0. (25)

Thus a unit travelling wave exists only if the inequality (25) has a non-empty
solution set. It is readily seen that this is the case only when « < PP/(P+1)"* in
which case the equation ¢* (1) — 1) +« = 0 has precisely two positive zeros. The result
then follows directly. O

We note first that in this case, the range of values of ¥ (0 < k < kp = PP /(14 P)'*?)
for which a unit travelling wave can exist is much more restricted than in either of
the two previous cases. In particular k, ~ ¢7!/P as P o0, and the range of values
of k over which travelling waves are possible shrinks rapidly to zero with increasing
P. We note further that for the case m = 2, n = 1 (i.e. P = 1), which has been studied
in detail by Merkin & Needham (1990), the bound «, = } was found to provide only
a relatively weak upper bound, with unit travelling waves actually existing only for
k < 0.0465. This suggest that for P > 1, the upper bound «, may still be relatively
weak, with the range of « over which travelling waves actually exist shrinking to zero
faster than O(P7!) as P— 0.

As found in Merkin & Needham (1990), for each value of x for which travelling
waves exist, numerical computations reveal that there are two values V,(k,P),
Vy(k, P) (with V; > V,) such that a unique unit travelling wave exists for each V, =
and V;, > V,. At the maximum value of « for which unit travelling waves exist, I, = 15,
and the two branches come together. The existence of these two branches of unit
travelling waves in this case could be substantiated further by examining the
asymptotic solutions of (22), (23) for 0 < « < 1, following Merkin & Needham (1990).

5. The initial-value problem

Here we examine the overall properties of the full initial-value problem (4), (5). We
first establish a priori bounds on the solution. In what follows, for convenience, we
will refer to the initial-value problem (4), (5) as 1vP.

I1. Let a(x,t), f(x,t) be a solution of 1ve for ¢ €[0,7] and any 7' > 0. Then
O0<a(xt) <1, 0<fxt)<1+p,
for all (z,t)e (— o0, 00) x [0, 7.

Proof. (a) To establish the left-hand inequalities, we apply theorem 14.11 from
Smoller (1983). Using this it readily follows that the region R < R?, with R =
{(a, )" :ax, f = 0}, is a positively invariant region for equations (4). Since in 1VP,
(a(z,0), B(x,0))*€R for all xz€(— o0, 0), the results follow directly.

(b) To establish the right-hand inequalities, we use the maximum principle for
scalar parabolic operators (see, for example, Protter & Weinberger 1967 ; Britton
1986 ; Smoller 1983). From equations (4) and part (a), we have,
zzso’ (a+ﬂ)t‘(a+ﬂ)1z<0 (26)

for all (x,t)e(—o00,00)x(0,77]. Initial and boundary conditions (5) together with
(26) and the strong maximum principle imply directly that a(x,t) <1 and a(z,f)+

a,—a
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Bz, ) < 140, for all (x,t)e(—00,00)x(0,7]. On using part (a¢) again we have
Pz, ) < 144, for all (x,¢)e(— 0, 00) x (0, 7], as required.

We are now in a position to establish the following.
I2. 1vp has a unique global solution.
Proof. We first rewrite 1vP in terms of 4 = a—1 and B = § to obtain,

U=U,+FU), —0o<x<o,t>0,

U(x,0) = h(x), —00 < x < o0, VP
Ux,t)~0 as |z|—>o00, t=0,

where U = (4,B)", F(U) = (—(4+1) B™, (A + 1) B®—xB™)" and h(x) = (0, h(x))* with
h(zx) given by (5a).

From I1, we observe that any solution of 1ve for ¢€[0, T'] and any T > 0, is a priori
bounded in the L —norm, with, |U(-,#)|, < 2+ 8, for all t€[0,7]. We now apply
theorem 14.4 of Smoller (1983), with the admissible Banach space BC, = {w(x): R—
R:w(x) is bounded and uniformly continuous with |w(x)|—>0 as |2|— c0}. Clearly
h(x)eBC,, and it then follows that there exists a solution of wpin 0 <t < T for
any T >0, which gives global existence. Moreover, for each t > 0, U(x,t)eBC,.
Uniqueness follows directly from lemma 14.3 of Smoller (1983). O

We note that I1 and I2 demonstrate that the solution of 1vP does not blow-up in
finite-time or as ¢t oco(in || - ||,). We next establish the following threshold criterion
on the input parameter fg,.

13. Let a(x, t), f(x,t) be the solution of 1ve. Then for m > 3 there exists a C(m) > 0
such that when g, < o™¥™ 1 C(m), a(x,t) > 1, B(x,t) >0 as t > co, uniformly in x.

Proof. This follows from Needham & Merkin (1991). We only outline the proof here.
For each m > 3, we can construct a similarity solution to the equation,

Lu=0,-0,-U0"=0,t>0, —0 <x < 00,
of the form, .
Uz, t) = (t+ o) V™ F (2t +0°]72), |2], ¢ =0, (27a)
where F,, (y) is a bounded, positive and even function of y, with #,(y) >0 as y— o

through terms exponentially small in y. In additions ¥, (y) is monotone decreasing
in y > 0. At ¢t = 0, the solution (27a) reduces to,

Ux,0) = o 2™ 1F, (lz|/0), —00 <x < 00. (27b)

Thus using the above properties of F, (), we observe that, f(z,0) < U(x, 0), provided
that 8, < o~¥™ 1 F, (1). Moreover, L{U] =0, L[] <0, —o0 < < o0, t > 0 using /1.
An application of the comparison theorem for scalar parabolic operators then leads
to, f(x,t) < U(x,t), —oo < < oo, t > 0. However, U(z,t) >0 as t > oo uniformly in
x, hence (since f(x,t) = 0 via I1), f(x,t) >0 as ¢t > 0o uniformly in x as required. The
result on «(z,t) then follows by considering the equation for w = a4+ f—1. We note
finally that C(m) < F,(1). O

We remark that the above proof fails when m < 3 due to the non-existence of the
similarity solution (27 @) in this range of m. In fact, all solutions of L[U] = 0 with non-
negative initial conditions (except U = 0) blow-up (in |- ||,,) in finite time for m < 3
(see, for example, the review of Levine 1990).

We now consider the three cases n = m, n > m and n < m separately.
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(i) tve with n=m = 1

I14. The development of a permanent-form unit travelling wave in VP as ¢t — o0
requires k < 1.

Proof. Follows from R4.
I5. Let a(x,t), f(x,t) be the solution of 1vp, then, for x > 1,

oc(x,t)~{1+0(t—§)’ Lsm<3, as o0, —o0 <z < o0, (28a)
1+0@ Y1), m >3,
and
B, 1) <{ﬁ’0/{1 + A Yk —1)(m—1)B}V/™t m > 1, (285)
) ﬂoe—(/(—l)t, m = 1’

forall t >0, —o0 <z < 0.

Proof. The proof follows Merkin & Needham (1990) and Needham (1991). For (28b)
we use the scalar comparison theorem for parabolic operators, applied to the
operator L[U] = U,—U,,—(1—«)U™, together with the a priori bounds of I1.
Estimate (28a) follows by considering the equation for w =a+—1, following
Needham (1991). O

Thus, with x > 1, we have that f(«,¢) -0 and «(x,t) - 1, uniformly in «, as t - co.
In this case, the unreacted state « = 1, # = 0 is globally asymptotically stable with
respect to initial disturbances in # with compact support.

(ii) 1ve with m >n > 1
We first define F(¢) to be the unique solution to the initial-value problem,
F,=F"F""—«k], FO)=p, t>0.

It is readily shown that for 0 < 8, < Y™™ F(t) is monotone decreasing in ¢, with,

O VD), > 1,

29
O(e™"), n=1, (29)

F(t) ~ {
as t—> oo. This leads us to,
16. Let a(x,t), B(x,t) be the solution of 1vP, then, with g, < k™™ B(x,t) < F(t)
for all t > 0, —o0 < x < 00, whilst,
1+0(), 1<n<3,

(30)
L+O0@ YD) n >3,

a(x,t)~{
as t— 00, —o0 < x < 00.

Proof. This follows Merkin & Needham (1990) and Needham (1991). We use the
scalar comparison theorem for the parabolic operator L[U] = U,—U,,—U™+xU"
together with I1. The estimate (30) follows from considering the equation for
w=a+pf—1, as in Needham (1991). O

For this case we have, finally, the following.

I7. The development of a permanent-form unit travelling wave from 1ve requires,
k < PP/(P+1)P*Y and B, > «VF, where P = m—n.
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Travelling waves tn an isothermal system 273
Proof. Follows directly from R11 and /6.

Thus, in this case, the formation of a permanent-form unit travelling wave in 1ve
requires « to be sufficiently small and in addition, S, to exceed the threshold «'/Z.

(iii) vP with n >m > 1
Define G(t) to be the unique solution of the initial-value problem,

@, = Gm[1—kG™™], GO0)=pf, ¢>0.

For all 8, > 0, G(t) is monotone in ¢ with, G(¢) > «~Y™™ as t > c0. We can now use
G(¢#) in the following.

18. Let a(x,t) p(x,t) be the solution of 1ve, then, f(x,t) < G(¢) for all ¢ >0,
-0 <x < 0.

Proof. Follows from the scalar comparison theorem for the parabolic operator
Liu=0U0,-U,,—(U"—«U") and I1. O

We have been unable to obtain any further information in this case, although for
the case m = 1, n = 2, it has been shown in Merkin & Needham (1991) that wave
formation occurs for any «, f, > 0. For 1 < m < 3, it is indicated in §§2 and 3 that
this may still be the case. However, I3 introduces a threshold on g, for m > 3.

6. Discussion

We now summarize the information obtained in the previous sections to give an
overall picture of wave formation in the initial-value problem (4), (5). We consider
the three cases n = m, m > n and m < n separately.

(i)ym =m = 1. For m < 3, we have seen in §§4, 5 that wave formation cannot occur
for k = 1 for any S, > 0. However, for k < 1 the results of §§2, 3 suggest that wave
formation occurs for all g, > 0. With m > 3, an additional threshold is introduced,
with wave formation being inhibited when B, < o=%™~Y C(m) for any « > 0.

(it) m >n = 1. For m < 3 we see from §4 that wave formation cannot occur for
k= P?/(P+1)?*' (P = m—mn), whilst in §§2, 3, and 5 it is shown that wave formation
requires S, > k", With m > 3 we again have the additional restriction that wave
formation is inhibited when g, < o=%™= C(m).

(iii) » >m = 1. With m < 3, §§4, 5 provide no restriction on « and g, for wave
formation. Indeed, the g, < 1 theory of §3 and the well-stirred analogue of §2
indicate that wave formation occurs for all «, 8, > 0. Again for m > 3, the threshold
Bo > o 2Mm=Y ((m) is now required for wave formation.

We finally remark that a threshold on the chain-branching factor « is present in
all cases except when n >m > 1. When this threshold is satisfied an additional
threshold on the catalyst input parameter f, is present in all cases only when m >
3 (even when « = 0 and termination is absent). However, for m > n, a threshold is
present on g, for all m > 1.
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